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ABSTRACT

This document provides supplementary information to "Programmable photonic neural networks combining WDM with coherent
linear optics", giving the detailed information about PPNN modes of operation and the theoretical foundations, including a
detailed study of the wavelength-dependent operation of the splitters, combiners, switches and input and weight amplitude and
phase modulators employed in PPNN, concluding with the study of performance metrics focusing on insertion losses, power
consumption and footprint and the related penalties arising from multichannel, programmable operation.

S1 PPNN modes of operation
Depending on the configuration of the switches in Photonic Neural Network (PNN) axons, introduced in main body of the
Manuscript, Fig. 1, the Programmable (P)-PNN can operate in 4 distinct modes illustrated in Fig. S1. Left-hand side of the Fig.
S1 shows the n-th branch (axon) of the PPNN, according to Fig. 1(e) from the main body of the Manuscript, with inaccessible
(inactive) optical paths represented as semi-transparent, whereas the right-hand side of Fig. S1 shows the corresponding
abstraction of the NN layer.

When the switch SX,n is in its on or up state (SX,n = 1,∀n), as in Fig. S1(a), (b), each channel m carries its designated input
sequence Xm = [x1,m, . . . ,xN,m], depicted by appropriately colored input circles in the right-hand side abstractions, otherwise,
when SX,n is in its off or down state (SX,n = 0,∀n), as in Fig. S1(c), (d), all channels m ∈ [1,M] carry identical input sequence
X0 = [x1,0, . . . ,xN,0], represented by grey circles in the right-hand side abstractions.

Similar conclusion can be made for weights, with the exception that they are controlled by a combination of input, SX,n,
and weight switches, SW,n. Let us introduce a convention where the bar (straight) position of the weight switch is assumed as
its on state (SW,n = 1), whereas the cross position is assumed as its off state (SW,n = 0). If the optical signal can reach the
upper weight modulator bank of the axons, enclosed between the demultiplexer (DEMUX) and multiplexer (MUX), as is the
case in Fig. S1(a) for SX,n = 1∧SW,n = 1,∀n or in Fig. S1(c) SX,n = 0∧SW,n = 0,∀n, each channel m will be pondered by its
designated weight set Wm = [w1,m, . . . ,wN,m], depicted by appropriately colored lines connecting input and output circles in the
right-hand side abstractions. Otherwise, if the optical signal reaches a single weight modulator, as is the case in Fig. S1(b) for
SX,n = 1∧SW,n = 0,∀n or in Fig. S1(d) SX,n = 0∧SW,n = 1,∀n, all m ∈ [1,M] channels will be pondered by identical set of
weights W0 = [w1,0, . . . ,wN,0], represented by grey lines connecting input and output circles in the right-hand side abstractions.

Finally, the output switch SO,n is not controlled independently; its state depends on the path along which the optical signal
will arrive to it. Its truth table is given in Table 1 in the main body of the Manuscript and can be summarized through XNOR
operation as SO,n = SX,n ⊙SW,n.

The following modes of operation are supported by PPNN, according to Fig. S1 and Table 1:

a) multi-neuron - Each channel λm carries corresponding N-element input sequence xn,m where n ∈ [1, . . . ,N] and m ∈
[1, . . . ,M] (in total N ×M inputs) which is pondered by a designated set of N ×M weights wn,m and summed across N
axons, yielding M outputs ym. As shown in Fig. S1(a) this translates to M independent neurons with a fan-in of N.

b) convolutional - Each channel λm carries corresponding N-element input sequence xn,m where n ∈ [1, . . . ,N] and m ∈
[1, . . . ,M] (in total N ×M inputs) which is filtered by a single N element set of nominally wavelength-independent
weights wn,0, yielding M outputs ym. According to Fig. S1(b) this translates to M parallel neurons with a fan-in of N
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whose filter (weight vector) is identical. This mode of operation is commonly used in image recognition tasks or in any
other circumstances when inputs are expected to be filtered by an identical kernel.

c) fully-connected - All channels λm carry identical N-element input sequence xn,0 where n ∈ [1, . . . ,N] (in total N unique
inputs) which is pondered by a designated set of N ×M weights wn,m, yielding M outputs ym. As illustrated in Fig.
S1(c) this implies that each of N inputs is connected to each of M outputs via a unique connection, concluding to a
fully-connected layer. These types of layers are particularly convenient for classification and denoising purposes.

d) power-saving - All channels λm carry identical N-element input sequence xn,0 where n ∈ [1, . . . ,N] (in total N unique
inputs) which is filtered by a single N element set of weights wn,0, yielding M identical outputs y1 = . . .= yM . From
practical point of view, this layer is intended to be used with only one channel being active when sequential operation is
required concluding to a power-saving regime (M−1 channels are powered off). If all available channels are active, it
can be useful for in-situ PPNN calibration purposes with respect to wavelength sensitive performance.
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Figure S1. Mapping between the PPNN modes of operation represented through its n-th branch (axon) configuration
(left-hand-side) and the corresponding NN layer abstraction (right-hand-side) for: (a) multi-neuron, (b) convolutional, (c)
fully-connected (FC), and (d) power-saving arrangement. Semitransparent paths of axons are inaccessible to the optical signal.
MUX: multiplexer, DEMUX: demultiplexer

S2 Multichannel PPNN theoretical foundations

The input signal into the PPNN, given by the column-vector ELD, as defined in the main body of the Manuscript, first passes
through the 3dB X-coupler, as shown in Fig. 1(a), resulting in the signal entering the bias branch, EB,in, and the one entering
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the Optical Linear Algebraic Unit (OLAU), EOLAU,in, which read

EB,in =
1√
2

ELDeiπ/2 , (S1a)

EOLAU,in =
1√
2

ELD . (S1b)

The bias branch acts on an input vector via its diagonal matrix Wb, represented in Fig. 1(c). On the other hand, OLAU
requires the signal to pass several stages before the inputs Xn and weights Wn are imprinted. Starting from the input signal
defined by equation (S1b), we determine the input into each axon following the 1-to-N splitter depicted in Fig. 1(b). The
1-to-N splitter assumes that the fan-in N is a power of 2 and consists of log2 N stages of concatenated 3dB X-couplers where
one stage’s output is forwarded to the upper ports of the next stage’s input, while the lower input ports are kept dark. For
each bar-path of the coupler no phase change is introduced to the signal, whereas each cross-path brings a phase shift of π/2
assuming the coupler is ideal. As the splitting is done equally in terms of power, path taken through the splitting stage will
define only the phase accumulated by each signal, resulting in

EOLAU,in,n =
1√
N

(
eiπ/2

)kn
EOLAU,in =

1√
2

1√
N

(
eiπ/2

)kn
ELD , (S2)

where kn represents the n-th element of the sequence of Hamming (binary) weights of N1

K = [0,1,1,2,1,2,2,3, . . . , log2 N] . (S3)

Depending on the mode of PPNN operation, each of n axons will either allow for channel-selective imprint of inputs and/or
weights, or use a single input and/or weight for all channels. Following the conventions outlined in Table 2 related to input Xn
and weight Wn diagonal matrices, prior to entering the N-to-1 combining stage signals will read

EOLAU,out,n =WnXnEOLAU,in,n =
1√
2

1√
N

(
eiπ/2

)kn
WnXnELD . (S4)

The outputs from N axons will subsequently interfere within N-to-1 combiner given in Fig. 1(d). The combiner is designed
to be a π-rotated copy of the input 1-to-N splitter, where one stage’s lower outputs enter the next stages inputs, ensuring in that
way identical phase accumulation across all N signals, while the upper outputs of previous stage are discarded. The result of the
interference is

EOLAU,out =
1√
N

N

∑
n=1

(
eiπ/2

)ln
EOLAU,out,n =

1√
2

1
N

N

∑
n=1

(
eiπ/2

)ln+kn
WnXnELD , (S5)

where ln represents the n-th element of the reversed sequence of Hamming (binary) weights of N

L = [log2 N, . . . ,3,2,2,1,2,1,1,0] = log2 N −K . (S6)

Finally, ln + kn can be substituted by log2 N according to equations (S3) and (S6). The outputs of the bias branch, EB,out, and
the OLAU, EOLAU,out, are

EB,out =
1√
2

WbELDeiπ/2 , (S7a)

EOLAU,out =
1√
2

1
N

(
eiπ/2

)log2 N N

∑
n=1

WnXnELD . (S7b)

The two signals interfere in the last 3dB X-coupler of Fig. 1(a), giving

Eout =
1
2

(
eiπ/2

)1+log2 N
[

Wb

(
e−iπ/2

)log2 N
+

1
N

N

∑
n=1

WnXn

]
×ELD . (S8)
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S3 Engineering a non-power-of-2 splitter and combiner

In what follows, we present an algorithm for designing a 1-to-N splitter with an arbitrary number of outputs N based on
cascading the stages of X-couplers that are not restricted to equal power splitting and their electric field transfer function is
described by the following matrix

M =

[√
1−α i

√
α

i
√

α
√

1−α

]
, (S9)

where α denotes power fraction transmitted to the cross port of the coupler. The flowchart of the algorithm is given in Fig. S2
and it is designed to be resilient to variations in splitting ratio due to fabrication tolerances by limiting α to the range [1/2,2/3].
We verify the algorithm for N = 9 and N = 11.

The algorithm starts by examining if the splitter can be implemented by cascading the logX N identical, smaller-scale unit
cells providing 1-to-N1/Y splitting, with X ,Y, logX N,N1/Y ∈ N. If so, X = N1/Y , otherwise X = N and designing of the 1-to-X
splitter is initiated. If X is not a prime number, a further splitting of unit cells to k sub-cells should be done, such that the output
port count of a single sub-cell, xi, is a prime number, X = xy1

1 xy2
2 . . .xyk

k . Following the algorithm, in case of N = 9, we have
X = 3 and Y = 2, whereas for N = 11 we have X = 11 and Y = 1, where both X values are prime numbers, yielding x1 = 3
and y1 = 1 in the first case and x1 = 11 and y1 = 1 in the second case. The unit cell (or sub-cell) design requirements are to
achieve equal power splitting among all of its outputs, while the induced phase difference will be monitored for each output and
compensated by proper engineering of the combining stage.

In designing the sub-cell(s), if the number of outputs, xi, is even, a 3dB splitter is used with the input forwarded to the upper
port and the two outputs, equal in terms of power, recorded at the upper and lower output port, having accumulated phase shifts
of 0 and π/2, respectively. In general, the algorithm would proceed by designing two smaller-scale splitters, each of which
would have xi = xi/2 output ports; however, since the only even prime number is 2, yielding xi = 1, the design of the sub-cell is
finished.

Otherwise, if the number of outputs, xi, is odd, the algorithm starts by bringing the input signal to the upper input of the
X-coupler with α = (xi +1)/(2xi), and collecting the signals having a 0-phase change for the upper output and a π/2 for the
lower one. The algorithm proceeds with designing new sub-cells, one with the number of outputs xi = (xi −1)/2 and the other
with xi = (xi +1)/2. It starts by checking if the number of outputs is even or odd and follows the previously outlined procedure
which is repeated until xi = 1 is reached.

Applying this method to the arbitrary number of outputs X , where X is a prime number, the number of couplers for 1-to-X
cell will be X − 1, and the number of stages (cascades) ⌈log2 X⌉, implying that the maximum accumulated phase shift per
cell will be ⌈log2 X⌉π/2. For the whole 1-to-N splitter, (N −1) couplers are needed, arranged in Y⌈log2 X⌉ stages, yielding a
maximum phase accumulation of Y⌈log2 X⌉π/2.

Applying the developed algorithm to xi = 3, we have the first X-coupler with α = 2/3, or the splitting ratio 1/3-to-2/3,
followed by another 3dB (or α = 1/2) X-coupler connected to the lower port of the initial coupler. The three outputs are equal
in terms of power and have accumulated phase shifts of [0,π/2,π]. The full 1-to-N splitter can be realized by concatenating
1-to-X unit cells at each of the outputs of the initial, first-layer’s cell. In the case of N = 9, we use a total of N −1 = 8 couplers,
the powers at the outputs are identical, 1/N = 1/9 of the input power, whereas the phase accumulation within the n-th axon
reads exp(iknπ/2), where kn is the n-th element of k = [0,1,2,1,2,3,2,3,4].

The combining of the signals leaving the axons is done in an inverse manner, using X-to-1 combiner elementary units,
constructed by rotating the splitter elementary unit by π . Signals are forwarded to both inputs of X-coupler, but collected only
from the lower output. In this manner, it is ensured that the phase accumulation for the signal coming from the n-th input will
read exp(ilnπ/2), where ln is the n-th element of ⌈log2 X⌉− k, yielding an overall identical phase accumulation for all signals,
ensuring coherence preservation and constructive interference.

When it comes to the unit cell with xi = 11, we split the power as 5/11-to-6/11 by setting α = 6/11. We then proceed with
the design of two couplers, one with xi = 5 outputs and the other with xi = 6 outputs. The first one splits the input with the
power ratio of 2/5-to-3/5, further forwarded to 3dB coupler for the upper and 1-to-3 coupler for the lower port (designed by
concatenating 1/3-to-2/3 coupler and another 3dB coupler at the lower output port). The second coupler, used for xi = 6, starts
with a 3dB coupler, followed by two 1-to-3 couplers for each of the outputs. The total number of couplers used is X −1 = 10,
the total number of stages is ⌈log2 X⌉= 4 and the total phase accumulation is 2π . The X-to-1 combiner is designed following
the same, previously described approach: rotating the splitter by π and collecting the outputs only from the lower ports.
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Figure S2. Flowchart of the algorithm for designing power-conserving 1-to-N splitting stage by employing X-couplers. The
couplers can have arbitrary splitting ratio defined on the domain α ∈ [1/2,2/3] and N does not need to fulfil any particular
requirement.
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S4 Splitters, combiners and switches
Let us assume that X-coupler has a wavelength dependent transfer function such that (S9) for the m-th channel can be rewritten
as

Mm =

[√
1−αm i

√
αm

i
√

αm
√

1−αm

]
, (S10)

where αm = 1/2+∆αm denotes the power splitting ratio of the m-th channel and ∆αm its deviation from the targeted value of
1/2 in case of power-of-2 splitting/combining stages. The deviation can be either positive or negative and is not required to
fulfil any particular requirement, except that its magnitude does not exceed 1/2, i.e., that the X-coupler allows communication
between all input and output ports. When operated in splitter mode (having active only one input, Ein), the column-vector
signals exiting through the two output ports of the X-coupler, Eout,bar and Eout,cross will be given as

Eout,bar =
1√
2

AbarEin , (S11a)

Eout,cross =
1√
2

AcrossEineiπ/2 , (S11b)

where diagonal matrices Abar and Across carry the wavelength dependent deviations of splitting ratios

Abar = diag
[√

1−2∆α1, . . . ,
√

1−2∆αM

]
, (S12a)

Across = diag
[√

1+2∆α1, . . . ,
√

1+2∆αM

]
. (S12b)

On the contrary, when operated in coupler mode (having active both inputs, Ein,bar and Ein,cross), the column vector of the signal
leaving the X-coupler, Eout reads

Eout =
1√
2

(
AbarEin,bar +AcrossEin,crosseiπ/2

)
. (S13)

Let us also assume that the transfer function of the switch introduces a wavelength dependent loss-penalty originating from
non-ideal routing, such that the amount of optical power forwarded to the active port (consult Table 1 in the main body of
the Manuscript) is proportional to sm ≤ 1, implying that the electrical field of the optical signal passing through the switch
gets pondered by

√
sm. Assuming that the inactive branches of the input or weight banks will have their modulators set to

zero-transmission, we can assume that the excess optical power, proportional to 1− sm, will diminish and is not of concern for
further analysis. The transfer function of the switch can be given in matrix form

S = diag [
√

s1, . . . ,
√

sM] . (S14)

Having three switches in each axon (SX, SW and SO, see Fig. 1(e) in the main body of the Manuscript), and assuming they are
identical among themselves and among different axons, the loss-penalty will accumulate to S3.

Taking (S10)-(S14) into account, we repeat the procedure from Section S2 and find that the signals entering the bias branch
and the OLAU read

EB,in =
1√
2

AcrossELDeiπ/2 , (S15a)

EOLAU,in =
1√
2

AbarELD . (S15b)

After being passed through 1-to-N splitting stage, the signal entering the n-th axon is

EOLAU,in,n =
1√
2

1√
N

A1+ln
bar Akn

cross

(
eiπ/2

)kn
ELD , (S16)

where kn and ln denote the n-th element of the Hamming weight sequence and its reverse, given by (S3) and (S6), respectively.
At the output of the n-th axon, accounting for the switch-induced wavelength selective loss, we have

EOLAU,out,n =
1√
2

1√
N

S3A1+ln
bar Akn

cross

(
eiπ/2

)kn
WnXnELD . (S17)
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Passing the signals from all axons through N-to-1 combining stage yields

EOLAU,out =
1√
N

N

∑
n=1

Akn
barA

ln
cross

(
eiπ/2

)ln
EOLAU,out,n =

1√
2

1
N

S3A1+log2 N
bar Alog2 N

cross

(
eiπ/2

)log2 N N

∑
n=1

WnXnELD . (S18)

The signal leaving the bias branch reads

EB,out =
1√
2

AcrossWbELDeiπ/2 . (S19)

Finally, the two signals given by (S18) and (S19) interfere in the last X-coupler, giving

Eout =
1
2

S3
(

AbarAcrosseiπ/2
)1+log2 N

(
W̃b +

1
N

N

∑
n=1

WnXn

)
×ELD , (S20)

where W̃b denotes the bias branch channel-wise transfer matrix accounting for loss balancing and phase alignment, with its
m-th element being

w̃b,m = s−3/2
m

(√
1−4∆α2

meiπ/2
)− log2 N

wb,m . (S21)

S5 Inputs: Amplitude modulator – MZM
In case of input imprinting, we assume that Mach-Zehnder Modulators (MZMs) are voltage controlled, with both of their arms
having Phase Shifters (PSs) and that splitting/coupling is ideal in terms of optical power. Induced phase shifts are decomposed to
the contribution coming from DC bias voltage, φDC,1/2(VDC,1/2,λ ), and modulation RF voltage, φ1/2(V1/2,λ ), where subscripts
1 and 2 correspond to upper and lower phase shifter, respectively. Assuming push-pull operation, i.e., V1 =VRF and V2 =−VRF,
and assuming that the refractive index n dependence on the applied voltage can be represented by an odd function in the 1st

order approximation, phase shifts can be written in the following form

φDC,1/2(VDC,1/2,λ ) =
2π

λ
n(VDC,1/2,λ )LDC , (S22a)

φ1(VRF,λ ) =
2π

λ
n(VRF,λ )L =

2π

λ
n0(λ )L+

2π

λ
∆n(VRF,λ )L = φ0(λ )+∆φ(VRF,λ ) , (S22b)

φ2(−VRF,λ ) =
2π

λ
n(−VRF,λ )L =

2π

λ
n0(λ )L− 2π

λ
∆n(VRF,λ )L = φ0(λ )−∆φ(VRF,λ ) , (S22c)

where LDC and L stand for the lengths of the DC and RF electrodes of PSs, which may be different if separate phase sifters
are used, or identical if bias is applied together with the RF signal, whereas n0 = n(V = 0) denotes the refractive index of the
material without having the voltage applied and ∆n(V ) = n(V )−n0.

The electric field transfer function of the MZM in push-pull configuration reads

tMZM(VDC,1/2,VRF,λ ) = cos
(

2∆φ +φDC,1 −φDC,2

2

)
exp
(

i
2φ0 +φDC,1 +φDC,2

2

)
. (S23)

Let us assume that the modulator is centered to operate at the wavelength λc, which can be either equal to the channel
wavelength if a modulator-per-channel is used (as is the case in modes of operation #1 and #2 shown in Fig. S1(a), (b)), or
chosen independently if one modulator for several channels is used (as is the case in modes of operation #3 and #4 shown in
Fig. S1(c), (d)). In either of the two cases, the transfer function should be optimized to yield the appropriate xn,c value at λc
and the deviation should be monitored for the remaining wavelengths. Choosing the length of the PS such that φ0(λc) = 2pxπ ,
where px ∈ N and thus eliminating the accumulated phase shift at the central wavelength, we have

tMZM(λc) = cos
[

2∆φ(λc)+φDC,1(λc)−φDC,2(λc)

2

]
exp
[

i
φDC,1(λc)+φDC,2(λc)

2

]
. (S24)

Assigning the minimum value of the input transfer function to zero RF voltage requires following condition to be met

cos
[

φDC,1(λc)−φDC,2(λc)

2

]
exp
[

i
φDC,1(λc)+φDC,2(λc)

2

]
= 0 , (S25)
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which implies

φDC,1(λc)−φDC,2(λc)

2
=

(
q1 −

1
2

)
π , (S26)

where q1 ∈ Z. The simplest approach, by which generality is still not lost, is to choose q1 = 0 and set φDC,1(VDC,1,λc)+π =
φDC,2(VDC,2,λc) = φDC(VDC,λc) transforming equation (S24) to

tMZM(λc) = sin∆φ(VRF,λc)exp
{

i
[
φDC(VDC,λc)−

π

2

]}
. (S27)

In order to eliminate the accumulated phase shift at λc, we choose the DC voltages such that φDC(VDC,λc) = 2qxπ +π/2,
where qx ∈ N resulting in

tMZM(λc) = sin∆φ(VRF,λc) , (S28)

which will eventually be equal to the input xn,c, which we are aiming to imprint at λc.
Variations of ∆φ(VRF,λ ) and φDC,1(λ )− φDC,2(λ ) with wavelength can be neglected in the following analysis as they

are orders of magnitude lower than the variation of either φ0(λ ) or φDC,1(λ )+φDC,2(λ ), i.e., they are proportional to ∆n, as
opposed to n. This implies that no significant variation of the transfer function magnitude is anticipated with variation of
wavelength; rather, the major contribution will be reflected within the transfer function’s phase. This allows us to write, based
on equation (S23) and with previously introduced assumptions

tMZM(λ )≈ sin∆φ(VRF,λc)exp
{

i
[
φ0(λ )+φDC(VDC,λ )−

π

2

]}
. (S29)

Restricting ourselves to the 1st order approximation, phases φ0 and φDC can be estimated for λ in close proximity of λc as

φ0(λ )≈ φ0(λc)+
∂φ0(λ )

∂λ

∣∣∣∣
λc

∆λ = 2pxπ

[
1−

ng(λc)

n(λc)

∆λ

λc

]
, (S30a)

φDC(λ )≈ φDC(λc)+
∂φDC(λ )

∂λ

∣∣∣∣
λc

∆λ =
(

2qxπ +
π

2

)[
1−

ng(λc)

n(λc)

∆λ

λc

]
, (S30b)

where ∆λ = λ −λc and ng = n/(1+λ/n ·∂n/∂λ ) is the group index of refraction. Introducing equation (S30) to equation
(S29) we have

tMZM(λ )≈ sin∆φ(VRF,λc)exp
[
−2i

(
px +qx +

1
4

)
π

ng(λc)

n(λc)

∆λ

λc

]
, (S31)

which implies that for a nominal input xn,c, only the channel λc will have the targeted value imprinted, whereas any other
channel m will carry the signal

xn,m,c ≈ xn,c exp
(
−iξ (x)

m,c

)
, (S32a)

ξ
(x)
m,c = 2

(
px +qx +

1
4

)
π

ng(λc)

n(λc)

1
λc

(m− c)∆λ1 , (S32b)

where the subscript "{m,c}" denotes that the value xn,m,c is experimental (recorded at channel m ̸= c) rather than targeted. In
equation (S32b), ∆λ1 = λm+1−λm denotes the channel spacing (assuming equidistant channels), whereas px = n(V = 0,λc)L/λc
and qx = n(VDC,λc)LDC/λc represent the normalized lengths of the RF and DC pads of the phase shifters within the MZM and
are restricted to px,qx ∈ N.

S6 Weights: Amplitude modulator followed by a phase shifter – MZM-PS
Assuming that both arms have thermally-controlled PSs and that splitting/coupling is ideal in terms of power, the MZM’s
electric field transfer function will depend on different phase shifts in two arms, φ1 and φ2. Adding an additional PS following
the MZM, with the phase shift φ3, allows for precise control of the signal’s phase, which carries the sign of the weight. The
electric field transfer function of the MZM-PS system reads

tMZM−PS(λ ) = cos
(

φ1 −φ2

2

)
exp
(

i
φ1 +φ2

2

)
exp(iφ3) . (S33)
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MZM operates by being biased at 2θ -point, i.e., having φ1 −φ2 = 2θ at the nominal temperature T0. If θ is chosen to be
π/3, the magnitude of the transfer function at the nominal temperature will be cosθ = 1/2; otherwise, if π/4 is chosen, the
magnitude will be cosθ = 1/

√
2. We impose another condition, φ1 +φ2 = 4pwπ at λc, where pw ∈ N, eliminating the phase

offset at the nominal temperature and giving φ1(T0,λc) = 2pwπ +θ and φ2(T0,λc) = 2pwπ −θ .
At any point in time, only one phase shifter is being used for adjusting the weight magnitude |wn,c| by increasing its

temperature. The lengths of the two PSs within MZM arms are equal and the inherent phase difference is achieved by
increasing/reducing the length of the waveguide in the arms by the appropriate amount. Under these assumptions, phases φ1
and φ2 can be written in the following form, if the magnitude of the weight is |wn,c| ≤ cosθ

φ1(T,λ ) =
2π

λ
n(T0 +∆T,λ )L+θ = φ(T0,λ )+θ +∆φ(∆T,λ ) , (S34a)

φ2(T0,λ ) =
2π

λ
n(T0,λ )L−θ = φ(T0,λ )−θ , (S34b)

or, if |wn,c| ≥ cosθ

φ1(T0,λ ) =
2π

λ
n(T0,λ )L+θ = φ(T0,λ )+θ , (S35a)

φ2(T,λ ) =
2π

λ
n(T0 +∆T,λ )L−θ = φ(T0,λ )−θ +∆φ(∆T,λ ) , (S35b)

where φ(T0,λ ) = 2πn(T0,λ )L/λ and ∆φ(∆T,λ ) = 2π∆n(∆T,λ )L/λ . Based on equations (S34) and (S35), the sum and the
difference of the two phases is

φ1(λ )+φ2(λ ) = 2φ(T0,λ )+∆φ(∆T,λ ) , (S36a)
φ1(λ )−φ2(λ ) = 2θ − sgn(|wn,c|− cosθ)∆φ(∆T,λ ) , (S36b)

Substituting equation (S36) to equation (S33) we have

tMZM−PS(λ ) = cos
[

θ − 1
2

sgn(|wn,c|− cosθ)∆φ(∆T,λ )
]
× exp

{
i
[

φ(T0,λ )+
1
2

∆φ(∆T,λ )+φ3(λ )

]}
. (S37)

Incorporating the condition for eliminating the phase offset at the nominal temperature introduced earlier, φ(T0,λc) = 2pwπ ,
where pw ∈ N, we can equate the transfer function of the MZM-PS system, given by equation (S37), at the central wavelength
λc with the targeted weight value wn,c and determine the required thermally induced phase shift in MZM arms, as well as in the
subsequent standalone PS as follows

∆φ(∆T,λc) = 2sgn(|wn,c|− cosθ)(θ − arccos |wn,c|) , (S38a)

φ3(λc) =
1− sgn(wn,c)

2
π +2psπ − 1

2
∆φ(∆T,λc) . (S38b)

When looking at λ ̸= λc, variation of ∆φ(∆T,λc) with wavelength can be neglected as it is orders of magnitude lower than
variation of either φ(T0,λ ) or φ3(λ ), i.e., it is proportional to ∆n, as opposed to n, resulting in

tMZM−PS(λ )≈ |wn,c|exp
{

i
[

φ(T0,λ )+
1
2

∆φ(∆T,λc)+φ3(λ )

]}
. (S39)

Restricting ourselves to the 1st order approximation, phases φ and φ3 can be estimated for λ in close proximity of λc as

φ(λ )≈ φ(λc)+
∂φ(λ )

∂λ

∣∣∣∣
λc

∆λ = 2pwπ

[
1−

ng(λc)

n(λc)

∆λ

λc

]
, (S40a)

φ3(λ )≈ φ3(λc)+
∂φ3(λ )

∂λ

∣∣∣∣
λc

∆λ = φ3(λc)

[
1−

ng(λc)

n(λc)

∆λ

λc

]
, (S40b)

where ∆λ = λ −λc and ng = n/(1+λ/n ·∂n/∂λ ) is the group index of refraction. Introducing equation (S40) to equation
(S39) and recognizing that in all cases of practical interest ps, pw ≫ 1, we have

tMZM−PS(λ )≈ |wn,c|exp
[

i
1− sgn(wn,c)

2
π

]
exp
[
−2i(pw + ps)π

ng(λc)

n(λc)

∆λ

λc

]
, (S41)

9/15



which implies that for a nominal weight wn,c, only the channel λc will have the targeted value imprinted, whereas any other
channel m will carry the signal

wn,m,c ≈ wn,c exp
(
−iξ (w)

m,c

)
, (S42a)

ξ
(w)
m,c = 2(pw + ps)π

ng(λc)

n(λc)

1
λc

(m− c)∆λ1 , (S42b)

where the subscript {m,c} denotes that the value wn,m,c is experimental (recorded at m ̸= c) rather than targeted. In equation
(S42b), ∆λ1 = λm+1 − λm denotes the channel spacing (assuming equidistant channels), whereas pw = n(T0,λc)L/λc and
ps = n(T0,λc)L3/λc represent normalized lengths of the PSs within the MZM and the standalone PS, respectively, and are
restricted to pw, ps ∈ N.

S7 Signal multiplexing and demultiplexing
As outlined in the main body of the Manuscript, for purposes of (de)multiplexing, Arrayed Waveguide Gratings (AWGs)
are used with the assumption of parabolic channel-wise power transfer function. According to the power conservation law,
the transfer function of the pass channel reads TAWG(0) = (1+ 2rAWG)

−1 and in the case of suppressed channels we have
TAWG(±∆λ1) = rAWG/(1+2rAWG), with rAWG denoting AWG crosstalk in linear terms. The formalism above is valid for both
DEMUX and MUX. In case of DEMUX, m-th channel, denoted by subscript, is distributed to the targeted and two adjacent
ports, denoted by superscript

1√
1+2rAWG

{√
rAWGEm−1

m ,Em
m ,

√
rAWGEm+1

m
}
. (S43)

These signals get modulated either by {xn,m−1,xn,m,xn,m+1} or {wn,m−1,wn,m,wn,m+1} depending on the mode of PPNN
operation. However, as already shown in Chapters S5 and S6, being detuned from the wavelength for which the modulators are
optimized, side channels, indexed by m±1, will carry suboptimal input or weight value. In the following analysis we focus on
imprinting of inputs in modes of operation #1 and #2, as shown in Fig. S1 (a), (b), recognizing that the same formalism can be
applied for weights imprinting in cases #1 and #3, as given in Fig. S1 (a), (b). After demultiplexing, signals are pondered by
the corresponding xn,m,c values as follows

1√
1+2rAWG

{√
rAWGxn,m,m−1Em−1

m ,xn,mEm
m ,

√
rAWGxn,m,m+1Em+1

m
}
. (S44)

When reaching the MUX, instead of collecting only the pass channel (at the m-th port), MUX will also collect residuals of
the two adjacent ports (indexed m−1 and m+1 in the superscript):

1
1+2rAWG

{
rAWGxn,m,m−1Em−1

m ,xn,mEm
m ,rAWGxn,m,m+1Em+1

m
}
, (S45)

all of which are at the same wavelength λm yielding the output electric field

1
1+2rAWG

[rAWG(xn,m,m−1 + xn,m,m+1)+ xn,m]Em . (S46)

Two additional sets of approximations can be made: (i) knowing that the crosstalk exists only between adjacent channels,
and assuming that the channel spacing ∆λ1 is not large, phase shift due to suboptimal inputs/weights can be neglected implying
xn,m,m−1 ≈ xn,m−1 and xn,m,m+1 ≈ xn,m+1, and (ii) typical values of rAWG ≪ 1 allow to approximate (1+2rAWG)

−1 ≈ 1−2rAWG
finally resulting in an experimentally recorded input

xAWG
n,m ≈ xn,m + rAWG(xn,m−1 −2xn,m + xn,m+1) , (S47)

under the constrain xn,0 = xn,M+1 = 0. The same formalism can be applied to weights in modes of operation #1 and #3

wAWG
n,m ≈ wn,m + rAWG(wn,m−1 −2wn,m +wn,m+1) , (S48)

with wn,0 = wn,M+1 = 0, as well as biases in all modes of operation

wAWG
b,m ≈ wb,m + rAWG(wb,m−1 −2wb,m +wb,m+1) . (S49)

with wb,0 = wb,M+1 = 0.
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S8 Approximate experimental PPNN matrices
Experimental operation of the PPNN can be described by its transfer function, Qe, given in diagonal matrix form, similar to the
targeted one, Qt, defined by equation (2) in the main body of the Manuscript

Qe = diag[qe,1, . . . ,qe,M] = W̃e,b +
1
N

N

∑
n=1

We,nXe,n , (S50a)

qe,m = w̃e,b,m +
1
N

N

∑
n=1

we,n,mxe,n,m , (S50b)

where quantities indexed by "e" take different form depending on the mode of operation.

S8.1 Multi-neuron
This mode of operation, given in Fig. S1(a), assumes that both in case of inputs and weights designated modulator per channel
is used, yielding

qe,m = w̃AWG
b,m +

1
N

N

∑
n=1

wAWG
n,m xAWG

n,m . (S51)

Substituting equations (S47), (S48) and (S49) to equation (S51) we have

qe,m ≈ qt,m + rAWG
{
(w̃b,m−1 −2w̃b,m + w̃b,m+1)

+
1
N

N

∑
n=1

[(wn,m−1 +wn,m+1)xn,m −4wn,mxn,m +wn,m(xn,m−1 + xn,m+1)]} , (S52)

under the constrain xn,0 = xn,M+1 = 0, wn,0 = wn,M+1 = 0 and w̃b,0 = w̃b,M+1 = 0.

S8.2 Convolutional
Following the Fig. S1(b), in this mode of operation inputs have designated modulator per channel, whereas weights have a
single modulator for all channels, resulting in

qe,m = w̃AWG
b,m +

1
N

N

∑
n=1

wn,m,cxAWG
n,m . (S53)

Substituting equation (S42) to equation (S53) we have

qe,m ≈ exp
(
−iξ (w)

m,c

)[
w̃AWG

b,m exp
(

iξ (w)
m,c

)
+

1
N

N

∑
n=1

wn,0xAWG
n,m

]
. (S54)

Following the previously adopted approach while deriving Qt, where accumulated phase was not taken into consideration
for the transfer matrix of the PPNN (see equations (1) and (2) in the main body of the Manuscript), equation (S54) can be
rewritten as

qe,m ≈ w̃(w),AWG
b,m +

1
N

N

∑
n=1

wn,0xAWG
n,m , (S55)

where the phase shifters in the bias branch take the responsibility for phase-aligning the signals leaving the OLAU with the
signals coming from the bias branch to allow for constructive interference. The diagonal matrix describing the bias branch will
now read W̃ (w)

b = W̃bΞ
(w)
c =WbΞ

(w)
c exp(−iπ/2)log2 N , where

Ξ
(w)
c = diag

[
exp
(

iξ (w)
1,c

)
, . . . ,exp

(
iξ (w)

M,c

)]
, (S56)

with the m-th element of W̃ (w)
b being

w̃(w)
b,m = w̃b,m exp

(
iξ (w)

m,c

)
= |wb,m|exp(iϕb,m)exp(−iπ/2)log2 N exp

(
iξ (w)

m,c

)
. (S57)
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Substituting equations (S47) and (S49) to equation (S55) we have

qe,m ≈ qt,m + w̃b,m

[
exp
(

iξ (w)
m,c

)
−1
]

+ rAWG

[
(w̃b,m−1 −2w̃b,m + w̃b,m+1)exp

(
iξ (w)

m,c

)
+

1
N

N

∑
n=1

wn,0(xn,m−1 −2xn,m + xn,m+1)

]
, (S58)

under the constrain xn,0 = xn,M+1 = 0 and w̃b,0 = w̃b,M+1 = 0.

S8.3 Fully-connected
This mode of operation, given in Fig. S1(c), exhibits similar behaviour to convolutional mode, having its inputs imprinted by a
single modulator for all channels, whereas the weights are controlled on per-channel basis, yielding

qe,m = w̃AWG
b,m +

1
N

N

∑
n=1

wAWG
n,m xn,m,c . (S59)

Substituting equation (S32) to equation (S59) we have

qe,m ≈ exp
(
−iξ (x)

m,c

)[
w̃AWG

b,m exp
(

iξ (x)
m,c

)
+

1
N

N

∑
n=1

wAWG
n,m xn,0

]
. (S60)

Disregarding the accumulated phase, equation (S60) can be rewritten as

qe,m ≈ w̃(x),AWG
b,m +

1
N

N

∑
n=1

wAWG
n,m xn,0 , (S61)

where W̃ (x)
b = W̃bΞ

(x)
c =WbΞ

(x)
c exp(−iπ/2)log2 N and

Ξ
(x)
c = diag

[
exp
(

iξ (x)
1,c

)
, . . . ,exp

(
iξ (x)

M,c

)]
, (S62)

and with the m-th element of W̃ (x)
b being

w̃(x)
b,m = w̃b,m exp

(
iξ (x)

m,c

)
= |wb,m|exp(iϕb,m)exp(−iπ/2)log2 N exp

(
iξ (x)

m,c

)
. (S63)

Substituting equations (S48) and (S49) to equation (S61) we have

qe,m ≈ qt,m + w̃b,m

[
exp
(

iξ (x)
m,c

)
−1
]

+ rAWG

[
(w̃b,m−1 −2w̃b,m + w̃b,m+1)exp

(
iξ (x)

m,c

)
+

1
N

N

∑
n=1

(wn,m−1 −2wn,m +wn,m+1)xn,0

]
, (S64)

under the constrain wn,0 = wn,M+1 = 0 and w̃b,0 = w̃b,M+1 = 0.

S8.4 Power-saving
Final, power-saving mode of operation is given in Fig. S1(d). If used with a single channel, no deviation due to either AWG or
wavelength-dependent operation of the modulators will exist and the experimental matrix element will be equal to the targeted
one. However, if employed in PPNN calibration with all channels active using a single input and a single weight modulator per
axon, matrix element will read

qe,m = w̃AWG
b,m +

1
N

N

∑
n=1

wn,m,cxn,m,c . (S65)

Substituting equations (S32) and (S42) to equation (S65) we have

qe,m ≈ exp
[
−i
(

ξ
(x)
m,c +ξ

(w)
m,c

)]{
w̃AWG

b,m exp
[
i
(

ξ
(x)
m,c +ξ

(w)
m,c

)]
+

1
N

N

∑
n=1

wn,0xn,0

}
. (S66)
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Disregarding the accumulated phase, equation (S66) becomes

qe,m ≈ w̃(x,w),AWG
b,m +

1
N

N

∑
n=1

wn,0xn,0 , (S67)

where W̃ (x,w)
b = W̃bΞ

(x)
c Ξ

(w)
c = WbΞ

(x)
c Ξ

(w)
c exp(−iπ/2)log2 N with Ξ

(x)
c and Ξ

(w)
c being given by equations (S62) and (S56),

respectively. The m-th element of W̃ (x,w)
b reads

w̃(x,w)
b,m = w̃b,m exp

(
iξ (x)

m,c

)
exp
(

iξ (w)
m,c

)
. (S68)

Substituting equation (S49) to equation (S67) we have

qe,m ≈ qt,m + w̃b,m

{
exp
[
i
(

ξ
(x)
m,c +ξ

(w)
m,c

)]
−1
}
+ rAWG(w̃b,m−1 −2w̃b,m + w̃b,m+1)exp

[
i
(

ξ
(x)
m,c +ξ

(w)
m,c

)]
, (S69)

under the constrain w̃b,0 = w̃b,M+1 = 0.
As previously noted, if m = c, based on equations (S32b) and (S42b), we have ξ

(x)
c,c = ξ

(w)
c,c = 0. Additionally, setting all

bias modulators to the same value, w̃b,m = w̃b,c, ∀m, simplifies equation (S69) to qe,m ≈ qt,m.

S9 PPNN performance metrics
Let us assume that the number of active channels is given as MA ≤ M and the number of active axons as NA ≤ N. Insertion loss
(IL) for the bias branch, in units of dB, remains identical for all four modes of operation given in Table 1 in the main body of
the Manuscript, whereas the IL of the OLAU depends on the path taken by signal, given by states of the switches SW and SO as
follows

ILB = 4ILMUX +2ILC + ILW + IL(B)
R , (S70a)

ILOLAU = 2(1+SX +SO)ILMUX +2(1+ logX N⌈log2 X⌉)ILC +3ILS + ILX + ILW + IL(A)
R +10log10(N/NA) , (S70b)

where we adopt the following notation for the insertion losses originating from DE/MUX: ILMUX, X-coupler: ILC, switch: ILS,
input modulators (amplitude only): ILX, weight modulators (amplitude and phase combined): ILW, routing waveguides in the
bias branch: IL(B)

R and the axon: IL(A)
R . In (S70b) we assume that the splitting and combining stages are designed according to

the algorithm from Fig. S2 with X being the smallest principal integer root of N; if N is a power of 2, logX N⌈log2 X⌉ reduces
to log2 N.

The loss of the PPNN as a whole will be dictated by ILOLAU, being the greater of the two given by (S70). Leaving the
optical power, or, equivalently, the loss, in the bias branch as is, will allow its proper operation if bias is used only for sign
conversion from phase to the amplitude of the electrical field; however, if the bias also carries useful information, the losses in
the bias branch and the OLAU should be made equal, which can be achieved either by relying on the T/O MZM used for bias
weight amplitude modulation to suppress the excess optical power or by introducing a Variable Optical Attenuator (VOA) in
the bias branch with the attenuation equal to

ILOLAU − ILB = 2(SX +SO −1)ILMUX +2logX N⌈log2 X⌉ILC +3ILS + ILX + IL(A)
R − IL(B)

R +10log10(N/NA) . (S71)

Finally, the PPNN loss reads

ILPPNN = 2(1+SX +SO)ILMUX +2(1+ logX N⌈log2 X⌉)ILC +3ILS + ILX + ILW + IL(A)
R +10log10(N/NA) . (S72)

As a comparison, the non-programmable counterpart of PPNN (denoted as dual-IQ), which supports only one channel, has the
insertion loss of

ILdual−IQ = 2(1+ logX N⌈log2 X⌉)ILC + ILX + ILW + IL(A)
R +10log10(N/NA) , (S73)

implying that the penalty introduced by programmability and multi-channel operation reads

∆IL = ILPPNN − ILdual−IQ = 2(1+SX +SO)ILMUX +3ILS . (S74)

Power consumption of the PPNN is dictated by all of its active components, including the Laser Diodes (LDs), assumed to
have the optical output power PLD per channel and wall-plug efficiency of ηwp, input amplitude modulators (P(DC)

X and P(RF)
X ),
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weight amplitude and phase modulators (PW) and switches (PS). Having input modulators biased such that they output 0 at
zero RF voltage, (S25), implies that their power consumption will be proportional to the number of active axons NA and active
channels MA. Similar conclusion can be made for the power consumption of the weights, even though they are biased at 2θ

point at the nominal temperature T0, (S33)-(S35), implying that their transfer function is nonzero if control voltage signal is
not applied. Nevertheless, this poses no issue as the signals will already be suppressed by zero transfer function of the input
modulators when N < NA, or, will not be launched into the PPNN if MA < M. The total power consumption (in units of mW)
can be calculated as

PPPNN = MAPLD/ηwp + N[1+SX(MA −1)]P(DC)
X + NA[1+SX(MA −1)]P(RF)

X

+NA[1+SO(MA −1)]PW + MAPW + N(SX +SW +SO)PS + MAPTIA +PTEC . (S75)

where we also account for the power consumption of the optional Transimpedance Amplifiers (TIAs), PTIA, following the
photodiodes (PDs) if immediate detection is mandated by the specific application, as well as the optional temperature controller
(TEC), PTEC. Note that these two terms get reduced proportionally to the number of interconnected PPNN layers. The power
consumption per active channel is

PPPNN,m =
PLD

ηwp
+ N

[
1

MA
(1−SX)+SX

]
P(DC)

X + NA

[
1

MA
(1−SX)+SX

]
P(RF)

X

+NA

[
1

MA
(1−SO)+SO

]
PW + PW +

N
MA

(SX +SW +SO)PS + PTIA +
1

MA
PTEC . (S76)

As (S75)-(S76) show, there is no power penalty when excess LDs are powered off, MA < M. On the other hand, penalty
exists when the number of employed axons is below the maximum one, NA < N, which is attributed to the synchronized switch
states in all axons (a penalty that can be alleviated by allowing the switches to be set independently), as well as due to the DC
biasing of the input modulators. We note that P(DC)

X can be set to zero if asymmetrical MZMs are used, providing a built-in
phase difference of π between the upper and lower MZM branch.

In case of the non-programmable PNN, which supports only one channel, the power consumption amounts to

Pdual−IQ =
PLD

ηwp
+ NP(DC)

X +NAP(RF)
X +(NA +1)PW + PTIA +PTEC . (S77)

If PPNN is configured to operate in multi-neuron mode (#1), where SX = SW = SO = 1, or in power-saving mode (#4), where
MA = 1, SX = SO = 0 and SW = 1, Pdual−IQ and PPPNN,m are comparable and only marginal power-consumption penalty arises
in the PPNN case attributed to switches, which is, in mode #1, counterbalanced by the reduction in TEC power consumption on
per-channel basis. On the contrary, operating in modes #2 (convolutional) or #3 (fully-connected) allows sharing of the weight
or input modulators, driving the power consumption of PPNN below the one of dual-IQ.

It is worth noting that the power consumption of lasers need not be the maximum available; LDs should be biased such that
they guarantee enough power at the PPNN output to meet the sensitivity requirements (PR) and the appropriate margin (ILM) as
follows

PLD = PR10(ILPPNN+ILM)/10 . (S78)

Footprint of the PPNN is governed by the number of employed components and the minimum spacing between them. Let
us denote the length of one X-coupler with the associated routing waveguides as LC, the length of the whole axon as L(PPNN)

A
and the minimum spacing between the waveguides L∆. Without accounting for any particular optimization in device placement,
we estimate the PPNN area as

APPNN =
[
2(1+ logX N⌈log2 X⌉)LC +L(PPNN)

A

]
× (NM+N +M−1)L∆ , (S79)

where L(PPNN)
A = 3LS +4LMUX +LX +LW +LR accounts the lengths of the switches, LS, 2 pairs of DE/MUXes, LMUX, input,

LX, and weight modulators, LW, and the routing waveguides, LR. The footprint per active channel is

APPNN,m =
[
2(1+ logX N⌈log2 X⌉)LC +L(PPNN)

A

]
×
[

M
MA

(N +1)+
1

MA
(N −1)

]
L∆ . (S80)

In contrast, the area of a non-programmable, single channel neuron reads

Adual−IQ =
[
2(1+ logX N⌈log2 X⌉)LC +L(dual−IQ)

A

]
×NL∆ , (S81)
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where L(dual−IQ)
A = LX +LW +LR < L(PPNN)

A , implying that the added benefit of programmability introduces a penalty along the
longitudinal neuron dimension. When it comes the to lateral one, if we assume the best-case scenario for PPNN operation,
MA = M, the coefficient pondering L∆ reduces to (N +1)+(N −1)/M, which, in the limiting case of a very large M, yields
N +1, revealing the always-present penalty in lateral dimension originating from the added benefit of programmability, i.e., the
existence of two alternative routes a signal can take within the input and/or weight banks. In a more realistic case, when M
is large enough, but not infinite, e.g., of the order of N, the lateral coefficient yields approximately N +2. The larger the N,
the lesser footprint penalty will exist [∼ (1+2/N)]. On the other hand, when operating with a single wavelength (such as in
mode #4 where MA = 1), the lateral penalty becomes proportional to M, i.e., the number of channels for which the PPNN was
designed.

The throughput of the PPNN in inference applications, measured in Multiply-Accumulate (MAC) operations per second,
depends on the bandwidth of the input modulators and the mode in which the network is operated. Assuming the maximum
datarate of BX, we find that modes #1 through #3 operate at

TPPNN = MANABX , (S82)

whereas in mode #4 the throughput reduces to TPPNN(#4) = NABX, which can be deduced also from MA = 1. In other words, the
throughput per channel equals TPPNN,m = NABX. Finally, the footprint- and energy-efficiency (ηPPNN

F and ηPPNN
E ) are defined

as the ratios of the throughput and the area and consumed power, respectively, or equivalently, their per-channel values, and can
be calculated based on (S82), (S79) and (S75).
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